1-2-2 دریچه­ ها……………………………………………………………………………………….. 3

1-2-3 سازه ترکیبی سریز – دریچه…………………………………………………………. 4

1-2-4 آبشستگی………………………………………………………………………………… 6

1-3 ضرورت انجام تحقیق……………………………………………………………………………. 9

1-4 اهداف تحقیق…………………………………………………………………………………. 9

1- 5 ساختار کلی پایان­نامه………………………………………………………………………. 10

 فصل دوم: بررسی منابع

2-1 مقدمه…………………………………………………………………………………………. 12

2-2 مطالعات آزمایشگاهی جریان………………………………………………………………. 12

2-2 مطالعات عددی با نرم­افزار Flow3D…………………………………………………………….

 فصل سوم: مواد و روش­ها

3-1 مقدمه………………………………………………………………………………………. 22

3-2 نحوه انجام آزمایشات……………………………………………………………………….. 22

3-2-1 مخزن…………………………………………………………………………………… 23

3-2-2 پمپ……………………………………………………………………………………… 23

3-2-3 کانال آزمایشگاهی……………………………………………………………………….. 23

3-2-4 مخزن آرام کننده جریان……………………………………………………………………. 24

3-2-5 مدل سازه ترکیبی سرریز – دریچه………………………………………………………. 24

3-3 آنالیز ابعادی…………………………………………………………………………………. 25

3-4 شبیه­سازی عددی………………………………………………………………………… 27

3-4-1 معرفی نرم­افزار Flow3D…………………………………………………………………..

3-4-2 معادلات حاکم………………………………………………………………………….. 32

3-4-3 مدل­های آشفتگی…………………………………………………………………….. 33

3-4-3-1 مدل­های صفر معادله­ای………………………………………………………. 35

3 -4-3-2 مدل­های یک معادله­ای……………………………………………………….. 35

3-4-3-3 مدل­های دو معادله­ای………………………………………………………….. 36

3-4-3-4 مدل­های دارای معادله تنش………………………………………………………. 36

3-4-4 شبیه­سازی عددی مدل……………………………………………………………. 37

3-4-4-1 ترسیم هندسه مدل……………………………………………………………. 38

3-4-4-2 شبکه بندی حل معادلات جریان…………………………………………………. 38

3-4-4-3 شرایط مرزی کانال……………………………………………………………… 40

3-4-4-4 خصوصیات فیزیکی مدل……………………………………………………. 41

3-4-4- 5 شرایط اولیه جریان……………………………………………………………… 43

3-4-4-6 زمان اجرای مدل……………………………………………………………….. 43

فصل چهارم: نتایج و بحث

4-1 مقدمه………………………………………………………………………………. 46

4-2 شبیه­سازی هیدرولیک جریان در حالت کف صلب………………………………… 46

4-2-1 واسنجی نرم­افزار……………………………………………………………….. 46

4-2-1-1 ارزیابی نرم­افزارپ…………………………………………………………….. 48

4-2-1-2 بررسی تأثیر انقباض جانبی سازه ترکیبی سرریز – دریچه بر هیدرولیک جریان….. 54

4-3 شبیه­سازی آبشستگی پایین­دست جریان…………………………………………. 59

4-3-1 واسنجی نرم­افزار……………………………………………………………………. 59

4-3-1-1 ارزیابی نتایج نرم­افزار………………………………………………………………… 61

 فصل پنجم: پیشنهادها

5-1 مقدمه……………………………………………………………………………………….. 70

5-2 نتیجه­گیری…………………………………………………………………………………… 70

5-3 پیشنهادها…………………………………………………………………………………. 71

منابع…………………………………………………………………………………………… 74

چکیده:

در سازه‌های ترکیبی سرریز­-­ دریچه، تداخل جریان از زیر دریچه و روی سرریز باعث اختلاط شدید در جریان و تغییر در توزیع تنش‌های برشی کف می‌شود. از این‌رو شبیه‌سازی عددی الگوی جریان   برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید عبوری از این سازه‌ها بسیار پیچیده است. هدف اصلی از این تحقیق، شبیه‌سازی عددی هیدرولیک جریان و آبشستگی در پایین­دست جریان ترکیبی همزمان از روی سرریز و زیر دریچه با استفاده از نرم­افزار Flow3D  است. نرم­افزارFlow3D  یک نرم­افزار قوی در زمینه دینامیک سیالات محاسباتی است که برای حل مسائل با هندسه پیچیده مورد استفاده قرار می‌گیرد. این مدل برای شبیه سازی جریان­های سطح آزاد سه­بعدی غیر ماندگار با هندسه پیچیده کاربرد فراوانی دارد. در این تحقیق مدل­سازی در حالت کف صلب و کف متحرک انجام شد و برای واسنجی و صحت­سنجی این نرم­افزار به منظور تخمین پارامترهای جریان در سازه­های ترکیبی، از نتایج آزمایشگاهی صورت گرفته در این تحقیق استفاده شد. به منظور شبیه­سازی پروفیل سطح آب از روش VOF استفاده شد. همچنین برای شبیه­سازی آبشستگی جریان از مدل­های مختلف آشفتگی مانند RNG k-ɛ، k-ɛ و LES بهره گرفته شد. پس از اطمینان از دقت مدل و با   انتگرال­گیری­های پروفیل­های سرعت روی سرریز و زیر دریچه، میزان دبی عبوری از روی سرریز و زیر دریچه تعیین شد. سپس با انجام آنالیز ابعادی، نسبت دبی عبوی از روی سرریز به زیر دریچه، تابعی از عدد فرود (Fr)، نسبت عمق بالادست سازه به بازشدگی زیر دریچه () و هد آب روی سرریز به طول سازه () گردید. مقایسه نتایج مدل­سازی در حالت کف متحرک با نتایج آزمایشگاهی نشان می­دهد که مدل از قابلیت بالایی جهت شبیه­سازی الگو و میزان آبشستگی برخوردار است.

فصل اول: مقدمه

1-1- مقدمه

یکی از عمده‌ترین مشکلات سازه‌هایی از قبیل سرریزها، دریچه‌ها و حوضچه‌های آرامش که در بالادست بسترهای فرسایش‌پذیر قرار دارند، آبشستگی در مجاورت سازه است که علاوه­‌بر تأثیر مستقیم بر پایداری سازه، ممکن است باعث تغییر مشخصات جریان و در نتیجه تغییر در پارامترهای طراحی سازه شود. به دلیل پیچیدگی موضوع، اکثر محققین آن را به صورت آزمایشگاهی بررسی کرده­اند که با وجود تمام دست­آوردهای مهمی که تاکنون در زمینه آبشستگی موضعی حاصل گردیده است، هنوز هم شواهد زیادی از آبشستگی گسترده در پایاب دریچه‌ها، سرریزها، شیب‌شکن‌ها، کالورت‌ها و مجاورت پایه‌های پل دیده می‌شود که می‌تواند پایداری این سازه­ها را با خطرات جدی مواجه کند.

پدیده آبشستگی زمانی اتفاق می‌افتد که تنش برشی جریان آب عبوری از آبراهه، از میزان بحرانی شروع حرکت ذرات بستر بیشتر شود. تحقیقات نشان داده است که عوامل بسیار زیادی بر آبشستگی در پایین‌دست سازه تأثیرگذار هستند که از جمله آن­ها می‌توان به اندازه و دانه‌بندی رسوبات، عمق پایاب، عدد فرود ذره، هندسه سازه و … اشاره کرد (کوتی و ین[1] (1976)، بالاچاندار[2] و همکاران (2000)، کلز[3] و همکاران (2001)، لیم و یو[4] (2002)، فروک[5] و همکاران (2006)، دی و سارکار[6] (2006) و ساراتی[7] و همکاران (2008)).

دریچه­ ها و سرریزها به طور گسترده به منظور کنترل، تنظیم جریان و تثبیت کف، در کانال­های باز مورد استفاده قرار می­گیرند. بر اثر جریان ناشی از جت عبوری از رو یا زیر سازه­ها، امکان ایجاد حفره آبشستگی در پایین­دست سازه­ها وجود دارد که ممکن است پایداری سازه را به خطر اندازد؛ بنابراین تعیین مشخصات حفره آبشستگی مورد توجه محققین هیدرولیک جریان قرار گرفته است.

به منظور افزایش بهره‌وری از سازه­های پرکاربرد سرریزها و دریچه­ها، می‌توان آن­ها را با هم ترکیب نمود به‌طوری‌که در یک زمان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. با ترکیب سرریز و دریچه می‌توان دو مشکل عمده و اساسی رسوب‌گذاری در پشت سرریزها و تجمع رسوب و مواد زائد در پشت دریچه‌ها را رفع نمود. در سازه ترکیبی سرریز- دریچه، شرایط هیدرولیکی جدیدی حاکم خواهد شد که با شرایط هیدرولیکی هر کدام از این دو سازه به‌تنهایی متفاوت است.

2-1- تعاریف

1-2-1- سرریزها

یکی از سازه­های مهم هر سد را سرریزها تشکیل می­دهند که برای عبور آب اضافی و سیلاب از سراب به پایاب سدها، کنترل سطح آب، توزیع آب و اندازه­گیری دبی جریان در کانال­ها­ مورد­استفاده قرار می­گیرد. با توجه به حساس بودن کاری که سرریزها انجام می­دهند، باید سازه­ای قوی، مطمئن و با راندمان بالا انتخاب شود که هر لحظه بتواند برای بهره­برداری آمادگی داشته باشد.

معمولاً سرریزها را بر حسب مهم­ترین مشخصه آن­ها تقسیم­بندی می­کنند. این مشخصه می­تواند در رابطه با سازه کنترل و کانال تخلیه باشد. بر حسب این­که سرریز مجهز به دریچه و یا فاقد آن باشد به ترتیب با نام سرریزهای کنترل­دار و یا سرریزهای بدون کنترل شناخته می­شوند.

2-2-1- دریچه ها

دریچه­ها سازه­هایی هستند که از فلزات، مواد پلاستیکی و شیمیایی و یا از چوب ساخته می­شوند. از دریچه­ها به منظور قطع و وصل و یا کنترل جریان در مجاری عبور آب استفاده می­شود و از لحاظ ساختمان به گونه­ای می­باشند که در حالت بازشدگی کامل عضو مسدود کننده کاملاً از مسیر جریان خارج می­گردد.

دریچه ­ها در سدهای انحرافی و شبکه­های آبیاری و زهکشی کاربرد فراوان دارند. همچنین برای تخلیه آب مازاد کانال­ها، مخازن و پشت سدها به کار می­روند (نواک[1] و همکاران، 2004).

دریچه­ ها به صورت زیر دسته­بندی می­شوند:

بر اساس محل قرارگیری: دریچه­های سطحی و دریچه­های تحتانی. دریچه سطحی تحت فشار کم و دریچه تحتانی تحت فشار زیاد قرار می­گیرند.

بر اساس کاری که انجام می­دهند: دریچه­های اصلی، تعمیراتی و اضطراری. دریچه اصلی به طور دائم مورد بهره­برداری قرار می­گیرند. برای تعمیرات از دریچه تعمیراتی و در زمان حوادث از دریچه اضطراری استفاده می­شود.

بر اساس مصالح بدنه: دریچه­های فولادی، آلومینیومی، بتنی مسلح، چوبی و پلاستیکی. دریچه فولادی به خاطر استقامت زیاد به صورت وسیع مورد استفاده قرار می­گیرد.

بر اساس نوع بهره­برداری: دریچه­ های تنظیم کننده دبی و دریچه­های کنترل­کننده سطح آب

بر اساس مکانیزم حرکت: دریچه­ های خودکار، هیدرولیکی، مکانیکی، برقی و دستی. دریچه خودکار بر اساس نیروی شناوری و وزن دریچه و بدون دخالت انسان کار می­کند. دریچه هیدرولیکی بر اساس قانون پاسکال عمل می­نماید. دریچه برقی از دستگاه­های برقی، دریچه مکانیکی با استفاده از قانون نیرو و بازو و بالاخره دریچه دستی به صورت ساده با

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...