پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق الکترونیک گرایش قدرت:کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر- |
سهم لختی مزرعه بادی ، همانطوری که توسط سیستم قدرت تجربه میشود، در زمانی که توربینهای بادی پشتیبانی موقّت توان اکتیوِ اضافی معادل با با تخلیه انرژی جنبشی موجود در جرم چرخان توربین را فراهم میکنند، توسط رابطه3-12 بیان میشود:
(3-12)
که در آن:
(3-13)
برای یک تغییر بار پله ای و ضریب نفوذ مشخّصی از تولید بادی ، لختی توربینهای بادی موقّتاً به لختی شبکه اضافه شود. به عبارت دیگر با تحویل توان اضافی، علاوه بر توان حالت ماندگار تحویلی توربینهای بادی به کنترلر مبدل پاور الکترونیک، با جذب انرژی ذخیره شده در قسمت چرخان توربینها لختی شبکه نیز به نسبت افزایش مییابد.
سهم لختی توربین بادی ، بر اساس مدل تاخیری توربین- گاورنر که در [35] [57] بیان شده، بدست آمده است. ثابت لختی مجدّداً میتواند برای ضریب نفوذ مشخّصی از تولید بادی و همچنین سطح مشخّصی از پشتیبانی موقّت توان اکتیو محاسبه شده و برای اصلاح ثابت لختی معادل سیستم، در معادله 3-10 وارد شود.
مجموع تاخیر زمانی که در معادله 3-12 عنوان شد، بر اساس مدلی است که در [57] بیان شده است. زمانی است که در آن بیشترین تغییر فرکانس پس از بروز اغتشاشی در بار پدید میآید. این تاخیر متشکّل است از ثابت زمانی گاورنر ، ثابت زمانی ناشی ازحرکت دریچه شیر بخار و همچنین تأخیر ناشی از پاسخ توربین .
(3-14)
از اینرو، مجموع تاخیر زمانی ، برای هر واحد تولیدی منحصر به فرد میباشد. برای نیروگاههای حرارتی میتوان تأخیر زمانی را به صورتی که در ادامه میآید، نتیجه گرفت:
تأخیر زمانی مرتبط با گاورنر:
تأخیر زمانی ناشی از حرکت دریچه شیر بخار :
برای توربین بخار باز گرم کن:
تأخیر ناشی از پاسخ توربین :
برای تورین بخار باز گرم کن [35] :
همانطور که عنوان شد، قابلیّت تنظیم فرکانس بر اساس رابطه 3-8 برای ضرایب نفوذ مختلف باد و شدّت باد، تغییر میکند. تغییر در لختی سیستم در ازای ضرایب مختلف نفوذ تولید بادی، متناسب با نقشی که تولید بادی در کنترل فرکانس شبکه می پذیرد، متفاوت است. تغییر لختی سیستم وقتی تولید بادی در کنترل فرکانس شرکت نمیکند مطابق رابطه 3-10 و وقتی در آن شرکت دارد برابر رابطه 3-11 تعیین میشود. با حضور تولید بادی DFIG بدون آنکه مدل جامع DFIGدر آن وارد شود، مقادیر تخمینی تنظیم فرکانس و ثابت لختی شبکه در مدل خطی سیستم دوناحیه ای قدرت نشان داده شده در شکل 1-8 تغییر کرده و تاثیرات حضور سیستم کنترلی در آن در نظر گرفته میشود. جدول 3-1 مقادیر تخمینی تنظیم دروپ و لختی سیستم قدرت در حضور تولید بادی DFIG برای افزایش توان اکتیو معادل 0.05 توان مبنای مزرعه بادی در حضور ضرایب نفوذ متفاوت تولید بادی را نشان میدهد.
در حضور قابلیت پشتیبانی فرکانس
بدون پشتیبانی فرکانسی
شاخص
30%
20%
10%
30%
20%
10%
0%
ضریب نفوذ
پارامتر
0.0714
0.0625
0.055
0.0714
0.0625
0.055
0.05
4.2185
4.5061
4.7654
3.5
4
4.5
5
جدول 3- 1تغییر در تنظیم دروپ واحد های تولیدی و لختی سیستم برای ضریب نفوذ های متفاوت باد
3-2-8- کنترلر پیشنهادی برای پشتیبانی توان اکتیو از DFIG برای کنترل فرکانس
مشابه تولید متداول، توربینهای بادی مقدار مشخّصی انرژی جنبشی در قسمت چرخان توربین خود ذخیره می کنند. در مورد توربینهای بادی سرعت متغیّر این انرژی نقشی در کمک به لختی شبکه ندارد. زیرا ادوات الکترونیک قدرت حائل میان توربین بادی و شبکه، کوپلاژ میان سرعت چرخشی و فرکانس شبکه را از بین میبرد. به عبارت دیگر حضور مبدل الکترونیک قدرت میان توربین بادی و شبکه، مفهوم لختی توربینهای بادی را برای شبکه از میان میبرد.
معمولاً، کنترلرهای توربین بادی سرعت متغیّر سعی میکنند توربینها را در سرعت بهینهای مورد بهره برداری قرار دهند تا بتوانند بیشینه توان را متناسب با آن استحصال کنند. کنترلر بر اساس سرعت و توان الکتریکی اندازه گیری شده، نقطه مرجع گشتاور را تعیین میکند.
همانطور که شکل (3-1) نشان می دهد نقطه مرجع گشتاور ، ورودی مبدل الکترونیک قدرت است که با کنترل کلیدزنی و تنظیم جریان خروجی مبدل، توان تحویلی به شبکه را تأمین میکند. برای بکار بردن انرژی و لختی توربینهای بادی جهت تزریق توان اکتیو به شبکه و کمک به کنترل فرکانس، سیگنال کنترلی جدیدی مطابق با آنچه در شکل 3-9 در داخل خط چین نشان داده شده است، پیشنهاد میشود.
این سیگنال کنترلی در زمان تشخیص انحراف فرکانس در شبکه، کنترل اولیّه فرکانس توربینهای بادی DFIG را فعّال کرده و تغییر توان اکتیوی متناسب با تغییرات فرکانس سیستم و همچنین نرخ تغییرات فرکانس شبکه برای شبکه قدرت فراهم میآورد. اثر لختی توربینهای بادی با ثابت کنترلر و پشتیبانی کنترل اولیّه فرکانس نسبت مستقیم با دارد. این افزایش توان علاوه بر مقدار توان تحویلی توربینهای بادی قبل از بروز اغتشاش بار بوده و با اعمال سیگنال کنترلی جدید انرژی جنبشی موجود در جرم چرخان توربینها به این مقدار اضافه شده و مقدار جدیدی را اخذ می کند. لازم به ذکر است بخاطر جذب انرژی جنبشی موجود در توربینهای چرخان بادی جهت تزریق آن به شبکه، سرعت چرخش توربینها از سرعت بهینه شان کاهش مییابد. نرخ کاهش سرعت توربین بادی به تغییرات فرکانس و نرخ تغییرات آن وابسته است.
ذکر این نکته ضروری است، توان اکتیو اضافی DFIG، تنها در دوره ای گذرا در کنترل اولیّه فرکانس شرکت دارد. وقتی سیستم به حالت ماندگار جدیدی دست پیدا کرد که با حالت بهینه آن اختلاف دارد، نرخ تغییرات فرکانس توسط ثابت میراکنندگی بار و تنظیم دروپ سیستم تاثیر می پذیرد. کنترلر انتگرالگیر
شکل 3- 9 کنترلر پیشنهادی برای پشتیبانی فرکانس
حلقه ثانویه کنترل (AGC) سعی در از بین بردن خطای حالت ماندگار شبکه مینماید و فرکانس شبکه و توان انتقالی خطوط را به مقدار نامی و از پیش مقرّر شده آن باز میگرداند. در نتیجه، سیگنال کنترلی اضافی ای که برای مبدل الکترونیک قدرت در نظر گرفته شده بود و به عنوان تابعی از تغییرات فرکانس و نرخ تغییرات فرکانس عمل میکرد(شکل 3-9 )، غیرفعّال شده و عملکرد نرمال DFIG پیگیری میگردد تا مجدّداً سرعت چرخش توربینهای بادی را به میزان بهینه آن باز گرداند و زمینه مشارکتهای بعدی را فراهم کند.
3-3- مشارکت واحد های تولید توان خورشیدی در کنترل فرکانس شبکه
با توجّه به سابقه تحقیق مطرح شده در باب کنترل فرکانس سیستمهای تولید انرژی خورشیدی که در فصل پیش آمد، مشخّص شد، جایگزینی تولید خورشیدی به جای تولید متداول مستقیماً لختی شبکه را کاهش میدهد. علاوه بر آن با توجّه به نوسانات تابشی خورشید، توان استحصالی از انرژی خورشید ثابت نبوده و با تغییر شدّت تابش خورشید، تغییر میکند. خصوصیاتی که استحصال انرژی توسط سیستمهای خورشیدی به صورت MPPT به دنبال دارد، ویژگیهای مطلوبی برای بهرهبرداری از تولید خورشیدی در مقیاس بالا نیست. ورود یک چنین منبع کنترل نشدهای به شبکه، بار اضافی برای سیستمهای کنترل فرکانس به حساب میآید.
در این بخش ابتدا به چگونگی جذب انرژی خورشیدی توسط پانلهای خورشیدی و معادلات مربوطه بیان میشود. در ادامه استراتژی کنترلی مناسبی برای شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس بیان میشود. تاثیرات استفاده از یک چنین سیستم کنترلی بر روی سیستم قدرت مدل شده و ساختار کنترل فرکانس بار شبکه در حضور این کنترلر به روز میشود.
3-3-1- مشخّصات پانلهای خورشیدی و مدلسازی آنها
در اینجا به صورت مختصر خصوصیات و مدل ماژولهای خورشیدی بیان میشود [58]. ماژول خورشیدی، تجهیزی غیر خطی است که میتوان آنرا همانطور که در شکل 3-10 آمده به عنوان منبع جریان در نظر گرفت.
با صرفنظر از مقاومتهای سری داخلی ، میتوان معادلات متداول یک ماژول خورشیدی را به صورت بیان شده در رابطه 3-16 ذکر کرد:
(3-16)
شکل 3- 10 مدار معادل ماژول خورشیدی [21]
که در آن و به ترتیب جریان و ولتاژ خروجی ماژول خروجی می باشند. جریان تولیدی تحت تابش خورشیدی، جریان اشباع معکوس، شارژ الکتریکی الکترون، ثابت بولتزمن، فاکتور ایدهآلی دیود، دمای ماژول خورشیدی (به کلوین)، تعداد سلولهای خورشیدی موازی و جریان ذاتی شاخه مقاومت موازی ماژول خورشیدی است. همانطور که در معادله 3-17 فرمول بندی شده، جریان اشباع ماژول خورشیدی با نوسانات دما تغییر میکند:
فرم در حال بارگذاری ...
[پنجشنبه 1398-07-04] [ 09:50:00 ب.ظ ]
|